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Abstract

This paper is concerned with boundary element solution of two dimensional steady-state heat conduction problems

in multi-regions. In the proposed method, each region with different heat transfer properties is considered as a piecewise

homogeneous in a heterogeneous system. The solution scheme akin to a finite difference method or finite element

method sweeping treatment is adopted. The generated integral equation for a typical region is swept to obtain the

system matrix for all regions in a single step without considering compatibility conditions explicitly at interfaces. In the

case of linear or higher order elements, the non-square global system matrix is solved by the singular value decom-

position method. Multi-region test problems for square and circular domains are considered and numerical results are

presented.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The thermal performance of composite materials is of

critical concern for engineers. To know temperature

distribution in each region in such media is particularly

important for numerous applications in heat transfer

problems from rocket thrust chamber liners to the fuel

elements for nuclear reactors and many other fields.

Multi-region subject has been extensively studied

analytically and numerically in classical monographs

(see for example Refs. [1,2]). Among the numerical

methods, finite difference and finite element methods are

well-established. Recent advances on the subject are also

reported in the boundary element method (BEM) liter-

ature for different purposes. Huang and Shaw used

collocation technique in Treftz method, based on as-

ymptotic expansions of particular solutions, to couple

subregions [3]. This technique generates additional

equations in the final algebraic system. Later, Portella

and Charafi applied Trefftz boundary element method to

potential problems in arbitrarily shaped domains [4].
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For parallel computation reasons, Kamiya et al. used

the Uzawa and Schwarz methods for virtual internal

boundaries of the domain [5]. Then, Meric solved La-

place’s equation iteratively by an optimization based

domain decomposition method [6].

This paper presents a boundary element method

(BEM) for solving temperature distribution in multi-

region heat conduction problems [7]. The applied tech-

nique here is similar to a sweeping treatment of finite

difference method or finite element method for multi-

region problems. The system matrix representing the

whole domain is generated in a single step without

considering compatibility conditions explicitly at inter-

faces. This avoids extra numerical calculation step as

faced in classical BEM coupling. The obtained linear

equation system is solved by the singular value decom-

position method (SVD).
2. Theory

Heat conduction equation in steady-state:

r2Tsð~rrÞ ¼ � 1
Qsð~rrÞ; ð1Þ
ks

ed.
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Nomenclature

A the system matrix

b the known vector

Gs the local Green’s function for region s
k thermal conductivity, Wm�1 K�1

~nn surface normal

Nc shape function for the node c
�qq prescribed flux, Wm�2

Q heat source, Wm�3

~rr position vector for field point

T prescribed temperature, K

T temperature, K

u an orthogonal matrix

v an orthogonal matrix

w a diagonal matrix

x the unknown vector

Greek symbols

C closed surface

~qq position vector for source point

Subscripts

i the number of interfaces between regions

s the number of homogeneous regions

Superscript

c the node number
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where k is the thermal conductivity, T is the tempera-

ture, Q is the heat source, s represents homogenous re-

gions for s ¼ 1; . . . ; S. This equation may be applied to a

domain bounded by a closed smooth surface C, as

shown in Fig. 1. Boundary conditions are given on the

sections of the boundary C as follows:

T ¼ T on C1; q ¼ �qq on C2; ð2Þ

where T and �qq are prescribed temperature and flux, re-

spectively. For two neighbouring regions s and sþ 1,

interface conditions:

at~rr ¼~rri Tsð~rriÞ ¼ Tsþ1ð~rriÞ; ð3aÞ

at~rr ¼~rri ks
dTsð~rrÞ
dn

¼ ksþ1

dTsþ1ð~rrÞ
dn

; ð3bÞ

denoting C0 and C1 compatibility conditions and where i
indices represent interfaces between homogenous re-

gions for i ¼ 1; . . . ; I––the number of total interfaces

and s ¼ 1; . . . ; S––the number of subregions. Now for

the region s, the local Green’s function

r2Gsð~rr;~qqÞ ¼ � 1

ks
dð~rr �~qqÞ; ð4Þ

where~rr and ~qq are field and source points, respectively.

Multiplying Eqs. (1) and (4) with Gs and Ts, respec-
tively, and subtracting from each other and integrating
Fig. 1. Domain representation.
over the subdomain Vs, and integrating by parts,

boundary integral equation form of Eq. (1) can be

written in the general form (see, for example, [8,10])

Tsð~qqÞ ¼
Z
Vs

d~rrQsð~rrÞGsð~rr;~qqÞ

þ ks

Z
Cs

dC Gsð~rr;~qqÞTs
oTsð~rrÞ
on

"
� Tsð~rrÞ

oGsð~rr;~qqÞ
on

#
;

ð5Þ

where ~nn is the surface normal. The volume term in Eq.

(5) can be transformed into surface integrals provided Q
is a harmonic function and we can find such as U that

satisfies [9]

r2Uð~rr;~qqÞ ¼ �Gð~rr;~qqÞ; ð6Þ

thenZ
Vs

d~rrQsð~rrÞGsð~rr;~qqÞ

¼
Z
Cs

dC Qsð~rrÞ
oUð~rr;~qqÞ

on

"
� Uð~rr;~qqÞ oQsð~rrÞ

on

#
: ð7Þ

The fundamental solutions satisfy Eq. (4) in two di-

mensions

Gsð~rr;~qqÞ ¼ � 1

2pks
ln~RR; ð8Þ

where R ¼~rr �~qq. The boundary is represented with

constant or linear elements. The Cartesian co-ordinates

xi of an arbitrary point of an element defined in terms of

nodal co-ordinates xci and shape functions can be cal-

culated from

xi ¼ Ncxci ; ð9Þ

where c is the node number which ranges from 1 to 2,

i ¼ 1, 2 and Nc are the shape functions of elements de-

fined. Each solution variable, temperature and flux, can



i+1, j i, j 

i, j+1 i+1, j+1 
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Fig. 2. Double node selection at corners for linear elements.
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then be represented in terms of the same shape functions

as follows:

T ¼ NcT c; q ¼ Ncqc; ð10Þ

where T c and qc are the nodal values of temperature and

flux, respectively. Substituting the parametric represen-

tations of geometry, temperature and flux into Eq. (5), for

a regionwise constant heat source, the boundary integral

equation may then be written in the discretised form as

cð~qqÞTsð~qqÞ

¼ 1

2p

XM
m¼1

qcs
ks

Z
Cm

Nc ln j~RRjdC� 1

2p

XM
m¼1

T c
s

Z
Cm

Nc
~RR �~nn
R2

dC

þ 1

4

XM
m¼1

Qs

ks

Z
Cm

Nc½~RR �~nnð2 ln j~RRj � 1Þ�dC; ð11Þ

where cð~qqÞ takes value between 0 and 1 depending on

where~qq lies (see, for example, [10]). The accuracy of the

BEM essentially depends on the accuracy of evaluation

of integrals. Therefore, all integrals in Eq. (11) are cal-

culated analytically. The details of the integration

schemes are covered in Refs. [8–10].

In conventional techniques such as FDM or FEM,

multi-domain problems are relatively easy to deal with.

Each element is treated as a distinct entity having its own

material properties. However, the continuity of flux

across the regional interfaces is not enforced. This is be-

cause the FEM demand only temperature continuity be-

tween elements [9]. Therefore, FDM or FEM is naturally

attracting more interests for multi-regional problems.

In the usual BEM approach in the literature, each

subregion is treated separately to form the regional ma-

trices. The regional matrices are processed according to

known and unknown nodal values and eventually com-

bined according to relevant compatibility conditions to

arrive at the system matrix which represents whole do-

main. Here, some questions remain as to the efficiency and

cost of the method. Much of difficulty arises from the fact

that each subregion is handled separately. This scheme

becomes quite expensive especially when the number of

regions becomes quite large and the order of elements

becomes higher. The main portion of the classical proce-

dure for a constant element formulation is [8–10]

Do while s ¼ 1; . . . ; S * Do for region s *
Do while j ¼ 1; . . . ;N * Do for each node j *
Write Eq. (11) for the

source at element j
* Eq. (11) for each node *

Enddo j * Asxs ¼ bs *
Enddo s
Do while i ¼ 1; . . . ; I * Do for interface i *
Use C0 compatibility

explicitly combine

Asxs ¼ bs into Ax ¼ b
Enddo s * Ax ¼ b *
The proposed scheme here is robust, allowing the

multi-domain problems to be treated efficiently. The

generated equation for a typical region, Eq. (11), is

swept to obtain as a system matrix for all regions in a

single step. For this purpose, each region is considered

as a part of the full system with an appropriate node and

element number assignment. Since subregion matrices

are not formed individually here, the procedure is FEM

(or FDM) like, with one exception that flux compati-

bility (C1) is imposed implicitly as in classical BEM

treatment. In the classical procedure, compatibility

conditions are used in an extra second step to combine

subdomain matrices into a final system matrix. Overall

the procedure is desirably simplified but it costs resulting

in not necessarily always a square system matrix as in

the case of linear or higher order elements employed.

The proposed procedure is:

It is important to note that, for linear elements case,

at corner nodes of the subregions as in Fig. 2, double

nodes are used. This is due to the need of directional flux

separations at these particular nodes. In the sweeping

treatment, it is also worth mentioning that the sign of

flux must be reversed if the interface normal is in the

negative direction. A final system of linear algebraic

equations is obtained as follows

AX ¼ b; ð12Þ

where A is the resulting system matrix, x is the unknown

vector in the form

x ¼
Ti
–

qi

2
4

3
5;

Do while s ¼ 1; . . . ; S * Do for region s *
Do while j ¼ 1; . . . ;N * Do for each node j *
Write Eq. (11) for the

source at element j
Enddo j
Enddo s * Ax ¼ b*



Fig. 3. The system matrices A showing the distribution of non-

zero elements for test cases: (a) test case 1 (144 · 140), (b) test
case 2 (64· 63).
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Fig. 4. Temperature profile along the vertical center line

(x� ¼ x=L ¼ 0:5).
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Fig. 5. Temperature profile along the horizontal center line

(y� ¼ y=L ¼ 0:5).
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where i ¼ 1; . . . ; n, and b is the known vector caused by

the source and prescribed boundary values. The matrix,

A is always sparse and non-symmetric in general. Typ-

ical appearances of the matrix A for test cases solved

below are given in Fig. 3.

Since the matrix A is non-square for the case of linear

elements employed, as a solution method, the singular

value decomposition (SVD) method is used [11]. Let u

and v are orthogonal matrices, then, the matrix A has

the singular value decomposition in the form

A ¼ uwvT; ð13Þ

where w is a diagonal matrix. Then the solution of Eq.

(12) is given by

x ¼ vw�1uTb: ð14Þ

3. Numerical results

3.1. Case 1: square domain

As a first case, a square domain L� L (18 · 18) is

considered. The domain has nine (3 · 3) regions with

their own thermal properties. The flux on the left and

bottom sides are fixed at zero, while temperature are

taken 100 at the top and 50 at the right sides of the

domain. Table 1 shows the thermal conductivity coeffi-

cients of nine subregions.

The problem is modelled here with 16 equal length

constant elements at each subregion. FDM method with
Table 1

Thermal conductivity coefficients of the subregions

i j

1 2 3

1 0.60 0.70 0.80

2 0.70 0.50 0.60

3 0.80 0.60 0.50
a 24· 24 (eight in each region) grid, employing mesh

centered scheme is also used to asses the results of the

BEM. The results along the domain center lines are

compared in Figs. 4 and 5, where the agreement is good.

3.2. Case 2: cylindrical domain

The second test problem considered here is a circular

domain with four subregions as shown in Fig. 6. The

outer boundary of the domain is subjected to zero
k = 0.6 
Q = 5.0 

k = 0.4 
Q = 4.0 

D = 12 

Fig. 6. Thermal conductivity and source values for the second

case.
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Fig. 7. Temperature profile at y� ¼ y=D ¼ 0.
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Fig. 8. Temperature profile at y� ¼ x�.
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temperature. 16 linear boundary elements in each sub-

region (total 44 elements) in the BEM mesh are em-

ployed to model the case. The FEM based on the mesh

with 456 number of linear triangular elements and 241

nodes is used to solve the same case for comparison. The

FEM is especially chosen, instead of the FDM, due to

the singularity at the origin in the discretized equations

of FDM. Figs. 7 and 8 show temperature profiles along

x ¼ 0 and y ¼ x.
4. Conclusion

This work presents an accurate and efficient solution

of steady-state heat conduction problems in multi-re-

gions by the BEM. The methodology proposed here

eliminates the disadvantage of BEM against other clas-

sical discretization techniques such as FDM and FEM.

For this purpose, an algorithm to handle multi-region
problems in heat conduction problems is presented. A

straightforward approach to form global system matrix

is employed and linear system is solved by the SVD

technique. Two test problems in different geometries

were studied by the proposed scheme and compared

with FDM and FEM. It is shown that the results are in

complete agreement and the proposed solution tech-

nique is quite efficient.
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